Abstract

Calcium oxalate (CaOx) kidney stones accumulate within the renal tubule due to high concentrations of insoluble deposits in the urine. Pb2+-induced Ca2+ mobilization along with Pb2+-induced nephrotoxic effects within the proximal tubule have been well established; however, Pb2+ mediated effects within the collecting duct remains insufficiently studied. Thus in vitro and ex vivo model systems were treated with increasing concentrations of lead (II) acetate (PbAc) ± sodium oxalate (Na2C2O4) for 1 hour, both individually and in combination. Pb2+-mediated solution turbidity increased 2 to 5 times greater post- exposure to 75, 100 and 200 μM Pb2+ with the additional co-treatment of 10 mM oxalate in mouse inner medullary collecting duct (mIMCD-3) cells. Additionally, 100 μM and 200 μM Pb2+ alone induced significant levels of intracellular Ca2+ release. To validate Pb2+-mediated effects on the formation of CaOx crystals, alizarin red staining confirmed the presence of CaOx crystallization. Pb2+-induced intracellular Ca2+ was also observed ex vivo in fly Malpighian tubules with significant increases in CaOx crystal formation via Pb2+-induced intracellular Ca2+ release significantly increasing the average crystal number, size, and total area of crystal formation, which was ameliorated by tissue-specific SPoCk C transporter and Capa receptor knockdown. These studies demonstrate Pb2+-induced Ca2+ release likely increases the formation of CaOx crystals, which is modulated by a Gq-linked mechanism with concurrent Ca2+ extracellular mobilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.