Abstract
T-cell mediated acute inflammation of the ileum may occur during Crohn's disease exacerbations. During ileal inflammation, absorption of nutrients and electrolytes by villus cells is decreased with a concomitant increase in crypt and/or villus fluid secretion. These alterations lead to fluid accumulation and the subsequent diarrhoea. Net intestinal fluid secretion consists of HCO3--rich plasma-like fluid. However, the regulation and mechanisms of HCO3- secretion in normal and acutely inflamed ileum are not clearly understood. To study this phenomenon, anti-CD3 monoclonal antibody (mAb)- induced in vivo ileal inflammatory mouse models was used for in vitro functional studies with Ussing chamber and pH stat techniques. Three hours after anti-CD3 mAb injection, ileal mucosa stripped of muscular and serosal layers showed a significant increase in short circuit current (Isc) (0.58+/-0.07 microEq h(-1) cm2 versus 1.63+/-0.14 microEq h(-1) cm2). The cAMP-stimulated Isc component was sensitive to glibenclamide but not to DIDS, suggesting that a cystic fibrosis transmembrane conductance regulator (Cftr)-mediated anion conductance was responsible. Basal Cl--dependent HCO3- secretion, measured using a pH stat technique, was decreased significantly in anti-CD3-injected mice, with a simultaneous increase in Cl--independent HCO3- secretion that was also inhibited by glibenclamide. Experiments using Cftr-/- mice showed neither an increase in Isc nor an increase in HCO3- secretion, confirming the role for Cftr protein in stimulating anion secretion following anti-CD3 treatment. Western blot analysis indicated that Cftr protein levels were unaltered by anti-CD3 treatment, at least acutely. Finally, an immunoassay for cAMP showed significant increases in intracellular cAMP in villus cells, but not in crypt cells. These studies therefore suggest a shift from a predominantly electroneutral Cl-HCO3- exchange in normal mice, to a predominantly electrogenic anion secretion including HCO3- that occurs via functional Cftr during anti-CD3-mediated acute inflammation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have