Abstract
BackgroundThe lung epithelium constitutes the first barrier against invading pathogens and also a major surface potentially exposed to nanoparticles. In order to ensure and preserve lung epithelial barrier function, the alveolar compartment possesses local defence mechanisms that are able to control bacterial infection. For instance, alveolar macrophages are professional phagocytic cells that engulf bacteria and environmental contaminants (including nanoparticles) and secrete pro-inflammatory cytokines to effectively eliminate the invading bacteria/contaminants. The consequences of nanoparticle exposure in the context of lung infection have not been studied in detail. Previous reports have shown that sequential lung exposure to nanoparticles and bacteria may impair bacterial clearance resulting in increased lung bacterial loads, associated with a reduction in the phagocytic capacity of alveolar macrophages.ResultsHere we have studied the consequences of SiO2 nanoparticle exposure on Pseudomonas aeruginosa clearance, Pseudomonas aeruginosa-induced inflammation and lung injury in a mouse model of acute pneumonia. We observed that pre-exposure to SiO2 nanoparticles increased mice susceptibility to lethal pneumonia but did not modify lung clearance of a bioluminescent Pseudomonas aeruginosa strain. Furthermore, internalisation of SiO2 nanoparticles by primary alveolar macrophages did not reduce the capacity of the cells to clear Pseudomonas aeruginosa. In our murine model, SiO2 nanoparticle pre-exposure preferentially enhanced Pseudomonas aeruginosa-induced lung permeability (the latter assessed by the measurement of alveolar albumin and IgM concentrations) rather than contributing to Pseudomonas aeruginosa-induced lung inflammation (as measured by leukocyte recruitment and cytokine concentration in the alveolar compartment).ConclusionsWe show that pre-exposure to SiO2 nanoparticles increases mice susceptibility to lethal pneumonia but independently of macrophage phagocytic function. The deleterious effects of SiO2 nanoparticle exposure during Pseudomonas aeruginosa-induced pneumonia are related to alterations of the alveolar-capillary barrier rather than to modulation of the inflammatory responses.Electronic supplementary materialThe online version of this article (doi:10.1186/s12989-014-0078-9) contains supplementary material, which is available to authorized users.
Highlights
The lung epithelium constitutes the first barrier against invading pathogens and a major surface potentially exposed to nanoparticles
The lung epithelium constitutes the largest surface of contact with the environment, and as such, can be considered as the major surface accidentally exposed to NPs
dynamic light scattering (DLS) analysis demonstrated that both types of NPs presented a hydrodynamic diameter of 44.4 and 50.9 nm respectively in water (Table 1) showing a low aggregation rate in solution
Summary
The lung epithelium constitutes the first barrier against invading pathogens and a major surface potentially exposed to nanoparticles. Alveolar macrophages are professional phagocytic cells that engulf bacteria and environmental contaminants (including nanoparticles) and secrete pro-inflammatory cytokines to effectively eliminate the invading bacteria/contaminants. Previous reports have shown that sequential lung exposure to nanoparticles and bacteria may impair bacterial clearance resulting in increased lung bacterial loads, associated with a reduction in the phagocytic capacity of alveolar macrophages. NPs will be deposited in different regions of the lungs, including the alveoli [2] After their entry in the alveolar space, NPs encounter alveolar macrophages (AMs) and epithelial cells. AMs are professional phagocytic cells that recognize invading microbes, including bacteria, and release cytokines and inflammatory mediators needed to mount host responses against these pathogens [3]. Further internalization occurs, resulting in the degradation of the engulfed bacteria in the phagolysosome [4]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.