Abstract

Our recent finding of a meditation-related increase in low-frequency NREM sleep EEG oscillatory activities peaking in the theta-alpha range (4-12Hz) was not predicted. From a consolidated body of research on sleep homeostasis, we would expect a change peaking in slow wave activity (1-4Hz) following an intense meditation session. Here we compared these changes in sleep with the post-meditation changes in waking rest scalp power to further characterize their functional significance. High-density EEG recordings were acquired from 27 long-term meditators (LTM) on three separate days at baseline and following two 8-hr sessions of either mindfulness or compassion-and-loving-kindness meditation. Thirty-one meditation-naïve participants (MNP) were recorded at the same time points. As a common effect of meditation practice, we found increases in low and fast waking EEG oscillations for LTM only, peaking at eight and 15Hz respectively, over prefrontal, and left centro-parietal electrodes. Paralleling our previous findings in sleep, there was no significant difference between meditation styles in LTM as well as no difference between matched sessions in MNP. Meditation-related changes in wakefulness and NREM sleep were correlated across space and frequency. A significant correlation was found in the EEG low frequencies (<12Hz). Since the peak of coupling was observed in the theta-alpha oscillatory range, sleep homeostatic response to meditation practice is not sufficient to explain our findings. Another likely phenomenon into play is a reverberation of meditation-related processes during subsequent sleep. Future studies should ascertain the interplay between these processes in promoting the beneficial effects of meditation practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.