Abstract

The purpose of this study was to examine the effects of speed training on sprint step kinematics and performance in male sprinters. Two groups of seven elite (best 100-m time: 10.37 ± 0.04 s) and seven sub-elite (best 100-m time: 10.71 ± 0.15 s) sprinters were recruited. Sprint performance was assessed in the 20 m (flying start), 40 m (standing start), and 60 m (starting block start). Step kinematics were extracted from the first nine running steps of the 20-m sprint using the Opto-Jump–Microgate system. Explosive power was quantified by performing the CMJ, standing long jump, standing triple jump, and standing five jumps. Significant post-test improvements (p < 0.05) were observed in both groups of sprinters. Performance improved by 0.11 s (elite) and 0.06 s (sub-elite) in the 20-m flying start and by 0.06 s (elite) and 0.08 s (sub-elite) in the 60-m start block start. Strong post-test correlations were observed between 60-m block start performance and standing five jumps (SFJ) in the elite group and between 20-m flying start and 40-m standing start performance and standing long jump (SLJ) and standing triple jump (STJ) in the sub-elite group. Speed training (ST) shows potential in the reduction of step variability and as an effective short-term intervention program in the improvement of sprint performance.

Highlights

  • Past investigations have indicated a significant commonality between sprinting performance and explosive power [1,2,3,4,5]

  • This study has shown that the application of eight SST sessions are effective in significantly increasing 60-m block start and 20-m flying start sprint performance

  • Significant improvements were observed in lower extremity explosive power as ascertained by vertical and horizontal jump testing

Read more

Summary

Introduction

Past investigations have indicated a significant commonality between sprinting performance (across distances from 20 to 100 m) and explosive power [1,2,3,4,5]. As the largest inhibitor in the sprinting movement is gravity, sprinters must produce large vertical ground reaction force during step take-off to achieve maximal velocity [6]. This is achieved via application of plyometric training as it uses jump-based movements to train and improve explosive power. ST is treated as a low-volume training strategy and credited with producing significant gains in maximal running velocity [7] This form of training is based on short bouts of all-out sprints separated by rest periods from 90 s to 5–6 min to enhance post-exercise recovery and avoid fatigue, including central nervous system fatigue [8,9,10]. Similar in one regard to plyometrics, sprint-specific running involves a rapid eccentric movement followed by a short amortization phase that is

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call