Abstract

For most virus infections of the central nervous system (CNS), immune-mediated damage, the route of inoculation and death of infected cells all contribute to the pathology observed. To investigate the role of these factors in early canine distemper neuropathogenesis, we infected ferrets either intranasally or intraperitoneally with the neurovirulent canine distemper virus strain Snyder Hill. Regardless of the route of inoculation, the virus primarily targeted the olfactory bulb, brainstem, hippocampus and cerebellum, whereas only occasional foci were detected in the cortex. The infection led to widespread neuronal loss, which correlated with the clinical signs observed. Increased numbers of activated microglia, reactive gliosis and different pro-inflammatory cytokines were detected in the infected areas, suggesting that the presence and ultimate death of infected cells at early times after infection trigger strong local immune activation, despite the observed systemic immunosuppression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.