Abstract

Canine distemper virus (CDV), which causes severe infections in all domestic and wild carnivores, is transmitted by all secretions and excretions of infected animals. Despite the regular vaccination against it, CDV still manages to circulate in nature and is a worldwide problem in dogs. For many years in the world, the virus managed to circulate in nature. The current investigation aims to identify and characterize CDV in dogs with neurological symptoms and to determine whether CNS symptoms and phylogenetic data might be used to differentiate between CDV strains. The medical records of 35 dogs with central nervous system (CNS) symptoms were examined. An ELISA kit was used to identify CDV-specific IgG antibodies in all of the dogs' serum samples. RT-PCR confirmed the presence of CDV nucleic acid in 30 of these dogs. Of the RT-PCR-positive samples, 6 were randomly chosen for further sequencing, sequence comparisons, and phylogenetic reconstructions. Genes encoding the Hemagglutinin (H) and Fusion (F) proteins were partly sequenced and compared to other CDVs from throughout the world, including vaccine strains. The maximum likelihood method was used to build a phylogenetic tree using CDV H and F gene nucleotide sequences. According to phylogenetic analysis of partial H and F gene nucleotide sequences, the field CDVs in this investigation were unique and different from the vaccine strain. The phylogenetic analysis indicated that all Turkish CDV strains that induced CNS symptoms belonged to the European CDV clade. While the intricacy of the CNS and the complexities of glycosylation pathways may provide significant challenges to infections, future research will bring significant benefits by identifying evolutionarily conserved activities of N-glycosylation in CDV-infected dogs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call