Abstract

In this paper we present the design of two actuators for the generation of highly nonlinear solitary waves (HNSWs), which are mechanical waves that can form and travel in highly nonlinear systems. These waves are characterized by a constant spatial wavelength and by a tunable propagation speed, dependent on the wave amplitude. To date, the simplest and widely adopted method to generate HNSWs is by impacting a striker onto a chain of beads of equal size and mass. This operation is conducted manually and it might be impracticable if repetition rates higher than 0.1 Hz are necessary. It is known that the HNSWs' properties, such as amplitude, duration, and speed can be modified by changing the size or the material of the particles, the velocity of the striker, and/or the precompression on the chain. To address the limitations associated with the manual generation of HNSWs we designed, built, and tested two actuators. The first actuator consists of a chain of particles wrapped by an electromagnet that induces static precompression on the chain. This design allows for the generation of solitary waves with controlled properties. The second actuator consists of a chain surmounted by an electromagnet that lifts and releases a striker. This actuator permits the remote and noncontact generation of solitary waves. The performance of both actuators is evaluated by comparing the experimental HNSWs to theoretical predictions, based on the long wavelength approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.