Abstract
We examined whether chronic circadian physical activity attenuates hypothalamic–pituitary–adrenal hormone responses after footshock with or without cage-switch stress. Young (45 g) male Fischer 344 rats were randomly assigned to individual suspended home cages (HC) or cages with activity wheels (AW) (12 h:12 h light –dark photoperiod). After 6 weeks, each animal from a pair matched on mass (HC and AW) and average weekly running distance (AW) was randomly assigned to controllable or uncontrollable footshock on 2 days separated by 24 h. Half the animals were returned to the HC after the first day of shock, and half were switched to a new shoebox cage. One animal of each pair could end the shock for both rats by performing an FR-2 lever press. The yoked animal could not control the shock. After shock on Day 2, trunk blood was collected after decapitation. Plasma adrenocorticotrophin (ACTH), corticosterone, and prolactin were determined by radioimmunoassay. ANOVA for a 2 Group (AW vs. sedentary) × 2 Test (controllable vs. uncontrollable shock) × 2 Condition (HC vs. cage-switch) design indicated a Group × Test × Condition effect [ F(1, 48) = 5.07, p = 0.03] and a Test main effect [ F(1, 47) = 6.93, p = 0.01] for ACTH. ACTH was higher for sedentary animals after uncontrollable footshock under cage-switch conditions and higher after uncontrollable versus controllable footshock when averaged across groups and cage conditions. No effects were found for corticosterone or prolactin. Our results extend to activity wheel running prior findings of a cross-stressor attenuation in plasma [ACTH] in response to cage-switch after treadmill exercise training, though the cross-stressor effect was additive with footshock. Consistent with our prior reports, the cross-stressor effect of wheel running was not apparent after footshock administered under home-cage conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have