Abstract

Activity was recorded from 145 neurons in the in situ stellate ganglia of 36 dogs. The activity of 28 of these neurons, most of them located in the ganglia's cranial medial region, was related to the cardiac cycle primarily during systole. The activity of 16 of these cardiovascular-related neurons was modified by gentle mechanical distortion of the superior vena cava (1), heart (4), or thoracic aorta (11). Forty-one of the neurons were modified by respiration, with 17 being phase-locked to the respiratory cycle. Other neurons were activated by gentle mechanical distortion of localized regions of the thoracic wall (21% of all neurons), neck (18%), skin of the left foreleg (10%), or the mediastinum adjacent to the stellate ganglion (3%). Acutely decentralizing the stellate ganglion abolished the spontaneous activity of some, but not all, of these neurons including the respiratory or cardiovascular-related neurons. In the intact or acutely decentralized stellate ganglion, few neurons were activated by single short duration (1-4 ms) stimuli delivered to nerves attached directly or indirectly to the ganglion; however, most were activated by brief high frequency stimuli delivered in trains of 20-200 ms, or by single stimuli lasting 20-200 ms. As most cardiovascular, respiratory, or neck-related neurons in the stellate ganglion were not activated by single brief stimuli delivered to the cardiopulmonary nerves or vagosympathetic trunks, presumably they did not project their axons into the neck or thoracic organs. Thus, they were considered to be interneurons. It is postulated that interneurons in stellate ganglia can be modified by afferent receptors located in tissues of the neck, lungs, heart, or great thoracic vessels, whether the ganglion is intact or acutely decentralized. In addition, neurons in the stellate ganglion can be modified by mechanoreceptors located in the thoracic wall, abdominal wall, foreleg, or adjacent mediastinum. The majority of these neurons are activated by trains of impulses rather than single short duration impulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.