Abstract

Because costal and crural diaphragm segments have different functional characteristics, ventilatory stimulation with hypoxia or hypercapnia may elicit differential segmental function. We report measurements of diaphragm segmental length, shortening, and electromyogram (EMG) activity from 11 canines that were chronically implanted with sonomicrometry transducers and EMG electrodes and then studied a mean of 18 days postimplantation while awake and breathing spontaneously during CO2 rebreathing and progressive isocapnic hypoxia. Ventilatory responses to hypercapnia and progressive hypoxia were moderate at 1.13 +/- 0.31 (SD) 1. min-1. mm-1 arterial Pco2 and -0.98 +/- 0.51 l. min-1.%arterial O2 saturation-1. When tidal values for breathing pattern and segmental function were compared at matching tidal volumes that correspond to mean CO2 of 49.4 arterial Pco2 and 77% arterial O2 saturation, there was no significant difference in resting length, tidal shortening, or tidal EMG of costal or crural segments. Intrabreath profiles of flow, shortening, and EMG activity at matched tidal volumes showed that 1) inspiratory flow during hypoxia was significantly greater during early inspiration, 2) crural EMG activity preceded costal EMG activity in early inspiration during both hypercapnia and hypoxia, 3) both segments showed increased postinspiratory inspiratory activity with stimulated ventilation, and 4) postinspiratory shortening and EMG were greatest for the crural segment during hypoxia. These results suggest that costal and crural diaphragm segments exhibit differential function during chemical stimulation, especially during postinspiration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call