Abstract

In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI), young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes.

Highlights

  • IntroductionProbabilities are crucial information because they improve prediction of future events

  • In an uncertain environment, probabilities are crucial information because they improve prediction of future events

  • Functional imaging showed that brain activity in inferior parietal and medial prefrontal cortex increased if the currently observed payoff had been seen many times before

Read more

Summary

Introduction

Probabilities are crucial information because they improve prediction of future events. Probabilities are learned through experience by observing the occurrence of events [1]. The motivation came from the observation that people can memorize, make predictions, and decide in the absence of immediate reinforcements. This ability to build a representation of the environment independently of the rewards to be received is made explicit in model-based reinforcement learning [2]. A separate estimation of probability and value is necessary to ensure rational choices [3,4]. This principle called ‘‘probabilistic sophistication’’ might seem counterintuitive because probabilities are combined with values to estimate expected value in many decision models (e.g., expected utility).

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.