Abstract

In this study, to investigate effects of yttrium and other elements for non-basal slips, magnesium alloy single crystals were stretched parallel to basal plane in various temperatures, and polycrystalline magnesium alloys were also tested to estimate contribution of non-basal slips to their tensile deformation behaviour. In pure magnesium single crystals, second order pyramidal (c+a) slip (SPCS) was observed at 298K. Above room temperature, first order pyramidal (c+a) slip (FPCS) was active. In the Mg - (0.6-0.9) Y alloy single crystals, FPCS was observed at 77K to 298K, while yield stress of the Mg-Y alloy single crystals was higher than that of pure magnesium. In tensile test of polycrystalline specimen, slips lines of non-basal slip systems such as SPCS, FPCS and prismatic slip were observed even at yielding in addition to basal slip lines. Among the non-basal slips, activities of FPCS and prismatic slips were increased with increasing strain in Mg - Y alloy polycrystals. Our study suggested that active non-basal slip system in tension parallel to basal plane is (c+a) pyramidal slip and enhanced ductility of magnesium - yttrium alloy would be caused from increased activity of FPCS by yttrium addition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call