Abstract
In neuromorphic computing, the coding method of spiking neurons serves as the foundation and is crucial for various aspects of network operation. Existing mainstream coding methods, such as rate coding and temporal coding, have different focuses, and each has its own advantages and limitations. This paper proposes a novel coding scheme called activeness coding that integrates the strengths of both rate and temporal coding methods. It encompasses precise timing information of the most recent neuronal spike as well as the historical firing rate information. The results of basic characteristic tests demonstrate that this encoding method accurately expresses input information and exhibits robustness. Furthermore, an unsupervised learning method based on activeness-coding triplet spike-timing dependent plasticity (STDP) is introduced, with the MNIST classification task used as an example to assess the performance of this encoding method in solving cognitive tasks. Test results show an improvement in accuracy of approximately 4.5%. Additionally, activeness coding also exhibits potential advantages in terms of resource conservation. Overall, activeness offers a promising approach for spiking neural network encoding with implications for various applications in the field of neural computation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have