Abstract
This paper explores active wake-flow control on a notchback Ahmed body using genetically inspired optimization. Hotwire and particle image velocimetry measurements record velocity data and flow structures in the wake. Pulsed jets at four actuation slots (two at the roof trailing edge, two at the side trailing edges) dynamically control the wake to minimize aerodynamic drag. The study achieves up to 9.2 % (without consideration of energy consumption) drag reduction, primarily by manipulating vortices from the roof rear end. The paper elucidates the underlying flow mechanism and evaluates various actuation strategies, highlighting how optimal control leads to reattachment of wake separation at the rear slant, diminishing the slant bubble and promoting downstream reattachment for enhanced drag reduction.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.