Abstract

Traditional object detection methods using static cameras are constrained by their limited perspectives, hampering the effective detection of low-confidence targets. To address this challenge, this study introduces a deep reinforcement learning-based visual perception enhancement technique. This approach leverages pan–tilt–zoom (PTZ) cameras to achieve active vision, enabling them to autonomously make decisions and actions tailored to the current scene and object detection outcomes. This optimization enhances both the object detection process and information acquisition, significantly boosting the intelligent perception capabilities of PTZ cameras. Experimental findings demonstrate the robust generalization capabilities of this method across various object detection algorithms, resulting in an average confidence level improvement of 23.80%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call