Abstract

This paper presents simulation and experimental results on the implementation of a velocity feedback control unit with a new flywheel inertial actuator, which can be used to reduce flexural vibration of distributed structures. The actuator incorporates a classical coil–magnet linear transducer and a flywheel element such that both linear and rotational inertia effects are generated by the moving components of the actuator. The additional rotational inertia effect shifts to lower values the fundamental resonance frequency of the actuator without increasing the static deflection of the suspended masses. Therefore, this actuator can be conveniently used to implement feedback control units, which are robust to shocks, have enhanced stability properties and, thus, improved vibration control effects. To illustrate the key features of the proposed actuator, the characteristic electro-mechanical response functions of a classical actuator and of the flywheel actuator are first presented. Then, the stability and flexural vibration control performance of velocity feedback loops with a classical and the flywheel inertial actuators are contrasted considering a thin rectangular plate hosting structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.