Abstract

In this study, the active vibration control of clamped plates using a positive position feedback (PPF) controller with a sensor/moment pair actuator (non-collocation configuration) is considered. To identify the characteristics of the PPF control system, a numerical parametric studies is conducted. The design parameters (gain and damping ratio) of the PPF controller are shown to have a significant effect on the stability and performance of the control system. Using these results, a multi-mode (first and second mode) single-input single-output (SISO) PPF controller is implemented. Two PPF controllers are connected in parallel with the SISO configuration. The final designed multi-mode PPF controller showed good conditional stability and high performance. The vibration levels at the tuned modes are reduced by about 5 dB. Finally, the performance of the PPF controller is experimentally verified. The disturbance levels at the target modes can be reduced by about 5 dB, nearly the same as the theoretical result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.