Abstract

By analyzing characteristics of the DTC (direct torque control) system in electrical driving system, a shortcoming of the classical DTC method is to point out that it is unable to decouple the mutual interference between torque and speed, so that when a running asynchronous motor subjected to an instantaneous impact load, rotor speed and its deviation appears excessive fluctuations that can not be quickly restored to the initial set value. In this research, under conditions that without sensors for measuring load torque and rotor speed, to an electrical drive systems contains DTC devices, a novel ASCC (active speed compensation control) method is proposed based on ADRC (active disturbance rejection control) theory, on account of DTC model of asynchronous motor, a multiobjective observer is designed to regulate both the speed and the torque, and a proof of asymptotic stability that related this new control systems with the observer is made by theoretical deduction. Finally stimulating results show that this method can overcome the shortcomings of classical DTC system and greatly enhance the ability of the high-speed driving system to deal with unexpected impact loads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.