Abstract
Combinations of biocides are commonly added to building materials to prevent microbial growth and thereby cause degradation of the façades. These biocides reach the environment by leaching from façades posing an environmental risk. Although ecotoxicity to the aquatic habitat is well established, there is hardly any data on the ecotoxicological effects of biocides on the soil habitat. This study aimed to characterize the effect of the biocides terbutryn, isoproturon, octhilinone, and combinations thereof on the total and metabolically active soil microbial community composition and functions. Total soil microbial community was retrieved directly from the nucleic acid extracts, while the DNA of the active soil microbial community was separated after bromodeoxyuridine labeling. Bacterial 16S rRNA gene and fungal internal transcribed spacer region gene-based amplicon sequencing was carried out for both active and total, while gene copy numbers were quantified only for the total soil microbial community. Additionally, soil respiration and physico-chemical parameters were analyzed to investigate overall soil microbial activity. The bacterial and fungal gene copy numbers were significantly affected by single biocides and combined biocide soil treatment but not soil respiration and physico-chemical parameters. While the total soil microbiome experienced only minor effects from single and combined biocide treatment, the active soil microbiome was significantly impacted in its diversity, richness, composition, and functional patterns. The active bacterial richness was more sensitive than fungal richness. However, the adverse effects of the biocide combination treatments on soil bacterial richness were highly dependent on the identities of the biocide combination. Our results demonstrate that the presence of biocides frequently used in building materials affects the active soil microbiome. Thereby, the approach described herein can be used as an ecotoxicological measure for the effect on complex soil environments in future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.