Abstract
Molecular dynamics simulation of human heart lactate dehydrogenase (LDH) has been carried out to determine the linear and two-dimensional Fourier transform infrared (2D-FTIR) spectra for the carbonyl stretch vibration of pyruvate in the tetrameric enzyme, using quantum vibrational perturbation theory. The computed line-shapes of individual subunits are inhomogeneously broadened and span the entire absorption range of the carbonyl vibration of the full enzyme, indicating the similar conformation heterogeneity in the four active sites of LDH. However, each subunit line-shape has different width and peak maximum due to variations in conformation equilibrium in different subunits, corresponding to the spectral multiplets observed experimentally. Since there is a finite time interval before a substrate is converted into products in a given active site, the distribution of such a time coarse-grained average of Michaelis complexes is called active-site heterogeneity. Active-site heterogeneity is distinguished fr...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.