Abstract

We explore the relationship between the nonequilibrium generation of myosin-induced active stress within the F-actin cytoskeleton and the pressure-volume relationship of cellular aggregates as models of simple tissues. We find that due to active stress, aggregate surface tension depends upon its size. As a result, both pressure and cell number density depend on size and violate equilibrium assumptions. However, the relationship between them resembles an equilibrium equation of state with an effective temperature. This suggests that bulk and surface properties of aggregates balance to yield a constant average work performed by each cell on their environment in regulating tissue size. These results describe basic physical principles that govern the size of cell aggregates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.