Abstract

Abstract Periodic activities of Dictyostelium discoideum can be observed in cell suspension as two types of oscillations in the light-scattering properties, spike-shaped and sinusoidal. Responses of suspended cells to applied chemoattractants are also reflected by transient changes in light scattering. Alterations in the light-scattering properties are due to structural changes such as changes in cell shape and/or changes in the size of cell aggregates. Therefore, changes in the aggregation state during autonomous oscillations and during attractant-induced responses were investigated. In order to be able to withdraw multiple samples and larger sample volumes from optically monitored cell suspensions, a photometer comprising glass fiber optics immersable in a cell suspension was constructed. Samples were fixed with formaldehyde and photographed. The aggregation state of the samples was quantified by counting the number of particles (cells and cell aggregates) per volume. Folic acid elicited in suspensions of undifferentiated cells a transient decrease in the number of particles per volume as did cAMP in suspensions of preaggregation cells. Periodic changes in the number of particles per volume occurred synchronously with spike-shaped and sinusoidal oscillations. The relative amplitude of the oscillations in particle number was larger during sinusoids than during spikes. Photographs showed periodic changes in the aggregate size during sinusoidal oscillations. In each cycle, the cell-aggregation phase was followed by a phase of partial disaggregation. The recurring loosening of cell-cell contacts may be relevant for sorting out the different cell types. The potential role of contact site as synchronizer and as constituent of an oscillator is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.