Abstract

Data on small active regions on the Sun collected over three years (2007–2009) are analyzed. Under very quiescent conditions (a low X-ray background level), the shapes of the coronal loops of some active regions correspond fairly well to the shapes of magnetic-field lines calculated in a potential approximation. This is true of several active regions (e.g., the group AR 10999 in June 2008) in which no flares more powerful than B3 were observed. The radio emission of this active region detected by the RATAN-600 telescope was very weak and virtually no polarization was detected. Subflares were observed in most groups. It is demonstrated using AR 10933 (January 2007) as an example that a growth in the soft X-ray emission by up to factors of ten simultaneous with an increase in the radio flux is characteristic for such active regions. A source with the opposite polarization developed to the Northwest of the main spot in AR 10933. A series of SOHO/MDI (and also Hinode) magnetograms shows the emergence of new magnetic flux before the development of this polarized source, which continued for several hours on January 8, 2007. The current density at surfaces located at various heights is estimated based on observations of the total vector magnetic field (Hinode data) and a non-linear, force-free magnetic-field extrapolation. The height-integrated current becomes appreciably stronger at two nodes above a field neutral line, near the location of the main emerging flux. This supports the idea that the emergence of new magnetic flux is a key factor in the evolution of active regions at all stages of their existence. The development of this picture could help in elucidating the inter-relationship between current enhancements, plasma heating, and particle acceleration, in both weak active regions and strong activity complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.