Abstract
A contemporary paper claimed that a method using the resistance of impedance (active power) for arc power calculation is more accurate than the conventional approach, with consequences on the actual heat transfer to the plate. However, despite the comprehensive reasoning, no heat-related results are shown in this intriguing paper to support the claim. Thus, the aim of this work was to apply the proposed method for determining the weight of active power in the total arc power. A series of weldments was carried out, by using GTAW in constant and pulsed current modes and short-circuiting GMAW with different inductance settings. The effect of the active power on the heat transfers to the plate was assessed by both bead cross-section geometries and calorimetry. The results showed that even a significant fraction of active power of the total power was reached, no changes in bead geometry or heat input were found. A review of the assumptions used in the primal paper showed that an arc is better represented by an ER circuit than by an RLC circuit. As a conclusion, the arc as a reactance-free load presents no component such as non-active power and the conventional approaches are accurate methods to measure arc power, representing the actual active power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.