Abstract

With the increase of wind power penetration in the power system, wind farm (WF) needs to limit active power and accurately track the instructions from the dispatch centre. Since a WF has many distributed wind turbines (WTs), it is a crucial issue to reasonably distribute power reference values to WTs. In this study, a novel active power dispatch (APD) strategy based on dynamic grouping of WTs is proposed. This strategy considers the characteristics and operating conditions of WTs, which can smoothen the power reference values to WTs and reduce fluctuations of key parameters of WTs. Then, a distributed dispatch strategy based on multi-agent system consistency algorithm (MASCA) is applied for APD, which provides a dispatch strategy for WTs that does not require a centralised control centre. And the segmental virtual consistency algorithm is presented as an improvement of MASCA, which innovatively allows MASCA to support the grouping strategy for APD. Finally, the simulations show that the proposed strategy can enable WTs to obtain smoother reference power to track the dispatching instruction while reducing fluctuations of rotor speed and pitch angle, which is helpful to alleviate the fatigue of WTs. The dispatch strategy also shows good robustness when some communication is interrupted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.