Abstract

The Large Binocular Telescope (LBT) is built around two 8.4 m-diameter primary mirrors placed with a centerline separation of 14.4 m in a common altitude/azimuth mount. Each side of the telescope can utilize a deployable prime focus instrument; alternatively, the beam can be directed to a Gregorian instrument by utilizing a deployable secondary mirror. The direct-Gregorian beam can be intercepted and redirected to several bent-Gregorian instruments by utilizing a deployable tertiary mirror. Two of the available bent-Gregorian instruments are interferometers, capable of coherently combining the beams from the two sides of the telescope. Active optics can utilize as many as 26 linearly independent degrees of freedom to position the primary, secondary and tertiary mirrors to control optical collimation while the telescope operates in its numerous observing modes. Additionally, by applying differential forces at 160 locations on each primary mirror, active optics controls the primary mirror figure. The authors explore the challenges associated with collimation and primary mirror figure control at the LBT and outline the ongoing related development aimed at optimizing image quality and preparing the telescope for interferometric operations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.