Abstract

Carbonic anhydrases are enzymes capable of transforming carbon dioxide into bicarbonate to maintain functionality of biological systems. Synthetic isolation and implementation of carbonic anhydrases into membrane have recently raised hopes for emerging and efficient strategies that could reduce greenhouse emission and the footprint of anthropogenic activities. However, implementation of such enzymes is currently challenged by the resulting membrane’s wetting capability, overall membrane performance for gas sensing, adsorption and transformation, and by the low solubility of carbon dioxide in water, the required medium for enzyme functionality. We developed the next generation of enzyme-based interfaces capable to efficiently adsorb and reduce carbon dioxide at room temperature. For this, we integrated carbonic anhydrase with a hydrophilic, user-synthesized metal–organic framework; we showed how the framework’s porosity and controlled morphology contribute to viable enzyme binding to create functional surfaces for the adsorption and reduction of carbon dioxide. Our analysis based on electron and atomic microscopy, infrared spectroscopy, and colorimetric assays demonstrated the functionality of such interfaces, while Brunauer–Emmett–Teller analysis and gas chromatography analysis allowed additional evaluation of the efficiency of carbon dioxide adsorption and reduction. Our study is expected to impact the design and development of active interfaces based on enzymes to be used as green approaches for carbon dioxide transformation and mitigation of global anthropogenic activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.