Abstract
Asphalt pavements in cold regions are often exposed to low-temperature cracking distress. The driving mechanism for this type of damage is usually an isolated event of fast surface cooling in combination with low-temperature levels. Another common characteristic of pavements in cold regions is the need for salting or mechanical clearing operations (or both) to address ice and snow events. An emerging solution to the latter issue is embedded heating systems—comprising of electric heating elements. These are commonly installed to help melt snow or prevent the accumulation of surface ice. This paper investigated an additional potential benefit of such heating systems—the ability to mitigate the development of low-temperature cracks. Thermomechanical calculations were carried out for an idealized pavement system modeled as a linear viscoelastic half-space. First, simulated winter-weather conditions were imposed to generate a surface crack at some point in time for a pavement without heating. Then after, the simulations were repeated—but with an active heating system. For the case considered, it is found that cracking can be potentially mitigated by the heating system if activated approximately half-an-hour before the time at which crack would occur.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have