Abstract

The relative transparency of biological materials to high-frequency electromagnetic waves has encouraged the development of new systems for imaging. This report describes experiments of microwave tomography conducted on a prototype. The object to be analyzed is submerged in water and is illuminated by a plane wave. The total electric field is analyzed by a microwave camera. The recorded data are then processed numerically in order to reconstruct the image that corresponds to the distribution of equivalent currents in a defined plane of a section. Experiments have been conducted on isolated kidneys with and without perfusion. The influence of the perfusing solution temperature has also been studied. These experiments show the potential of this system, especially through the correlation between microwave images and the biological structures. They also confirm previous results concerning spatial resolution and depth of exploration. Finally, the results demonstrate the influence of temperature and support the applicability of this imaging system in non-invasive thermometry, especially for clinical hyperthermia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.