Abstract

We have characterized the copy number, organization, and genomic modification of DNA sequences within and flanking several maize genes. We found that highly repetitive DNA sequences were tightly linked to most of these genes. The highly repetitive sequences were not found within the coding regions but could be found within 6 kb either 3' or 5' to the structural genes. These highly repetitive regions were each composed of unique combinations of different short repetitive sequences. Highly repetitive DNA blocks were not interrupted by any detected single copy DNA. The 13 classes of highly repetitive DNA identified were found to vary little between diverse Zea isolates. The level of DNA methylation in and near these genes was determined by scoring the digestibility of 63 recognition/cleavage sites with restriction enzymes that were sensitive to 5-methylation of cytosines in the sequences 5'-CG-3' and 5'-CNG-3'. All but four of these sites were digestible in chromosomal DNA. The four undigested sites were localized to extragenic DNA within or near highly repetitive DNA, while the other 59 sites were in low copy number DNAs. Pulsed field gel analysis indicated that the majority of cytosine modified tracts range from 20 to 200 kb in size. Single copy sequences hybridized to the unmodified domains, while highly repetitive sequences hybridized to the modified regions. Middle repetitive sequences were found in both domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.