Abstract
Several recent techniques for solving Markov decision processes use dynamic Bayesian networks to compactly represent tasks. The dynamic Bayesian network representation may not be given, in which case it is necessary to learn it if one wants to apply these techniques. We develop an algorithm for learning dynamic Bayesian network representations of Markov decision processes using data collected through exploration in the environment. To accelerate data collection we develop a novel scheme for active learning of the networks. We assume that it is not possible to sample the process in arbitrary states, only along trajectories, which prevents us from applying existing active learning techniques. Our active learning scheme selects actions that maximize the total entropy of distributions used to evaluate potential refinements of the networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.