Abstract
In this work, we introduce an active learning approach for the estimation of chemical concentrations from spectroscopic data. Its main objective is to opportunely collect training samples in such a way as to minimize the error of the regression process while minimizing the number of training samples used, and thus to reduce the costs related to training sample collection. In particular, we propose two different active learning strategies developed for regression approaches based on partial least squares regression, ridge regression, kernel ridge regression, and support vector regression. The first strategy uses a pool of regressors in order to select the samples with the greatest disagreements among the different regressors of the pool, while the second one is based on adding samples that are distant from the current training samples in the feature space. For support vector regression, a specific strategy based on the selection of the samples distant from the support vectors is proposed. Experimental results on three different real data sets are reported and discussed. Copyright © 2012 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.