Abstract

Data quality plays a vital role in scientific research and decision-making across industries. Thus, it is crucial to incorporate the data quality control (DQC) process, which comprises various actions and operations to detect and correct data errors. The increasing adoption of machine learning (ML) techniques in different domains has raised concerns about data quality in the ML field. Conversely, ML’s capability to uncover complex patterns makes it suitable for addressing challenges involved in the DQC process. However, supervised learning methods demand abundant labeled data, while unsupervised learning methods heavily rely on the underlying distribution of the data. Active learning (AL) provides a promising solution by proactively selecting data points for inspection, thus reducing the burden of data labeling for domain experts. Therefore, this survey focuses on applying AL to DQC. Starting with a review of common data quality issues and solutions in the ML field, we aim to enhance the understanding of current quality assessment methods. We then present two scenarios to illustrate the adoption of AL into the DQC systems on the anomaly detection task, including pool-based and stream-based approaches. Finally, we provide the remaining challenges and research opportunities in this field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.