Abstract

High-efficiency dynamic holography at 1.55 μm is demonstrated in a broad-area InGaAs/InP multiple-quantum-well vertical microcavity. The design places single quantum wells at the cavity antinodes, reducing mode-pulling and enabling a higher Q-factor. The device is pumped by interference fringes through an amorphous mirror that is transparent to a high-energy hologram writing pulse at a wavelength of 1.06 μm. Optically pumped free carrier gratings are probed by a tunable 1.5 μm laser in a four-wave mixing configuration. Diffraction efficiency into both m=±1 diffraction orders of 35% (70% total) has been obtained with a phase grating contribution approaching the maximum π phase shift by combining absorption bleaching with asymmetric Fabry-Perot reflectivity. The diffracted signal exhibits rise/fall times of 5 ns, demonstrating the high speed capabilities of this device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call