Abstract

A cold-induced stress mouse model for investigating chlamydia genital infection and immune response analysis was established in our laboratory. Previous results showed that cold-induced stress results in suppression of the immune response and increased intensity of chlamydia genital infection in the mouse model. The purpose of the present study was to evaluate the potential therapeutic value of active hexose correlated compound (AHCC) against chlamydia genital infection in mice. AHCC is an extract of mushroom commonly used as a dietary supplement is known to boost the immune system. Mice were infected intravaginally with Chlamydia trachomatis after a 24-day cold-stress application. Oral administration of AHCC to stressed or non-stressed mice was carried out seven days before infection and during the course of infection along with cervicovaginal swabbing. Cytokine production by peritoneal and splenic T cells isolated from AHCC-fed stressed mice and non-stressed mice was measured ELISA. Splenic T cells from both animal groups were co-cultured with mouse monocyte J774.2 cell line or cultured by addition of supernatants of AHCC-treated J774.2 cell line for 24 hours. Infection studies showed that AHCC-feeding compared to phosphate buffered saline (PBS)-feeding to stressed mice resulted in reduced Chlamydia trachomatis shedding from the genital tract. Levels of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) were significantly increased in stressed mice receiving AHCC compared to stressed mice receiving PBS. Production of interferon gamma (IFN-γ) and interleukin 2 (IL-2) in the AHCC group was significantly high compared to production in PBS-fed group. Splenic T cells from stressed and non-stressed cultured with supernatants of AHCC-treated J774.2 cell line resulted in significantly increased TNF-α or IFN-γ production. Results obtained in this study show that AHCC improves the function of immune cells as indicated by the restoration of levels of cytokines production that were suppressed under cold induced-stress conditions. This is the first report showing that oral administration of AHCC enhances the function of the immune system, which could result in increased resistance of the host to chlamydia genital infection.

Highlights

  • Epidemiologic data from the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC) have revealed that Chlamydia trachomatis genital infection is a serious public-health problem, with more than 90 million new cases occurring annually worldwide and 4 million in the USA alone [1,2,3]

  • The recovery in body weight was further reflected by a slight gain in spleen weight of active hexose correlated compound (AHCC)-fed compared to the phosphate buffered saline (PBS)-feed mice, suggesting that AHCC restores body and spleen weight of stressed mice

  • AHCC enhances resistance to Chlamydia trachomatis genital infection in stressed mice Using the cold water-induced stress model, we investigated the effect of AHCC feeding on the intensity and the course of a primary genital Chlamydia trachomatis infection in female mice

Read more

Summary

Introduction

Epidemiologic data from the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC) have revealed that Chlamydia trachomatis genital infection is a serious public-health problem, with more than 90 million new cases occurring annually worldwide and 4 million in the USA alone [1,2,3]. Different approaches of animal exposure to cold water have been widely used to study the effects of stress on resistance to infection [7,8,9]. In this stressing method, rodents are exposed to 4°C water and forced exercise of swimming that invokes a complex paradigm of stressors, including anxiety and hypothermia [9]. Application of cold water as stressor in animal models including mice has resulted in changes in levels of immunological parameters, corticosteroids, and catecholamines. Mice and rats exposed to cold water stress displayed decreased numbers of immune cells and a decreased capacity to secrete certain cytokines [8,13]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.