Abstract

Energy-driven drug efflux systems are increasingly recognized as mechanisms of antibiotic resistance. Chromosomally located or acquired by bacteria, they can either be activated by environmental signals or by a mutation in a regulatory gene. Two major categories exist: those systems energized by proton motive force and those dependent on ATP. The pumps may have limited or broad substrates, the so-called multiple drug resistance pumps, which themselves form a number of related families. The multiple antibiotic resistance (mar) locus and mar regulon in Escherichia coli and other members of the Enterobacteriaceae is a paradigm for a generalized response locus leading to increased expression of efflux pumps. One such pump, the AcrAB pump extrudes biocides such as triclosan, chlorhexidine and quaternary ammonium compounds as well as multiple antibiotics. In Pseudomonas aeruginosa, a number of multidrug efflux pumps export a broad range of substrates. Since bacteria expressing these pumps thwart the efficacy of both kinds of therapeutic agents which control infectious diseases -- biocides which prevent transmission of infectious disease agents and antibiotics which treat and cure infectious diseases -- they are of particular concern. The prudent use of antibiotics and biocides will guard against the selection and propagation of drug-resistant mutants and preserve the efficacy of these valuable anti-infective agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.