Abstract

Mechanical properties of disordered materials are governed by their underlying free energy landscape. In contrast to external fields, embedding a small fraction of active particles within a disordered material generates nonequilibrium internal fields, which can help to circumvent kinetic barriers and modulate the free energy landscape. In this work, we investigate through computer simulations how the activity of active particles alters the mechanical response of deeply annealed polydisperse colloidal gels. We show that the "swim force" generated by the embedded active particles is responsible for determining the mode of mechanical failure, i.e., brittle vs. ductile. We find, and theoretically justify, that at a critical swim force the mechanical properties of the gel decrease abruptly, signaling a change in the mode of mechanical failure. The weakening of the elastic modulus above the critical swim force results from the change in gel porosity and distribution of attractive forces among gel particles, while below the critical swim force, the ductility enhancement is caused by an increase of gel structural disorder. Above the critical swim force, the gel develops a pronounced heterogeneous structure characterized by multiple pore spaces, and the mechanical response is controlled by dynamical heterogeneities. We contrast these results with those of a simulated monodisperse gel that exhibits a nonmonotonic trend of ductility modulation with increasing swim force, revealing a complex interplay between the gel energy landscape and embedded activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.