Abstract

All-clamped plate structures are usually subject to strong coupling, model uncertainties and system time-delay. To address these challenges, this work proposes a novel vibration control method based on a linear active disturbance rejection controller (LADRC) with time-delay compensation (TDC-LADRC). The mathematical model of the piezoelectric plate is first established based on system identification with an auxiliary variable method. Then ADRC is designed for the delay-free part by a smith predictor with a novel differentiator. An extended state observer (ESO) is drawn to estimate the internal and external disturbances, such as mode errors, higher harmonics and external environmental excitations. Then, real-time compensation is introduced via feed-forward mechanism to attenuate their adverse effects, so that optimal vibration suppression performance can be achieved by the proposed controller. Finally, based on NI-PCIe6343 acquisition card, an experimental set-up is designed to verify and compare the performance of the proposed TDC-LADRC against the traditional LADRC and the traditional predictor based LADRC (PLADRC). Comparative experimental results show that the proposed TDCLADRC possesses the best disturbance rejection and vibration suppression performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.