Abstract

To improve the robustness and the anti-disturbance of control system, regulate its stiffness, a scheme concluding linear active disturbance rejection controllers for pneumatic servo system is proposed. Two linear active disturbance rejection controllers are designed respectively to track the motion and pressure reference. The design of a linear active disturbance rejection controller is independent of precisely mathematical model of the system. The extended state observer can track successfully the states and extended state of the system, and it is possible to realize the states feedback and handle the model uncertainty and compensate external disturbance. The simulation results show that pneumatic servo system based on linear active disturbance rejection controllers is robust against modeling uncertainty and external disturbances. The dynamic performance of the system using linear active disturbance rejection controllers also can be improved as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.