Abstract

With the participation of wind power in grid frequency modulation, the fatigue load of the wind turbine increases accordingly. A new control method that considers both fatigue load and output power of wind turbine (WT) is proposed in this paper. A linear active disturbance rejection control (LADRC) is designed and applied for the pitch angle in the wind turbine load reduction control. The particle swarm optimization (PSO) algorithm is used to optimize the parameters of the wind turbine controller, and the total variation of the wind turbine shaft torque and tower bending moment is added to construct a new objective function to further reduce the fatigue load of the wind turbine. The design-optimized controller is validated on a 5 MW wind turbine in SimWindFarm. The simulation results show that the LADRC controller can accurately track the reference power of the wind turbine, reduce the pitch angle fluctuation of the wind turbine, reduce the fatigue load of the wind turbine, and improve the service life of the wind turbine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.