Abstract
Conical-shape magnetic bearings are currently a potential candidate for various magnetic force-supported applications due to their unique geometric nature reducing the number of required active magnets. However, the bearing structure places control-engineering related problems in view of underactuated and coupling phenomena. The paper proposes an Adaptive Disturbance Rejection Control (ADRC) for solving the above-mentioned problem in the conical magnetic bearing. At first, virtual current controls are identified to decouple the electrical sub-system, then the active disturbance rejection control is employed to eliminate coupling effects owing to rotational motions. Comprehensive simulations are provided to illustrate the control ability.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have