Abstract

The seismicity and the associated seismic hazard in the central part of the Pannonian region is moderate, however the vulnerability is high, as three capital cities are located near the most active seismic zones. In our analysis two seismically active areas, the Central Pannonian and Mur-Mürz zones, have been considered in order to assess the style and rate of crustal deformation using Global Positioning System (GPS) and earthquake data. We processed data of continuous and campaign GPS measurements obtained during the years 1991–2007. Velocities relative to the stable Eurasia have been computed at HGRN, CEGRN and EPN GPS sites in and around the Pannonian basin. Uniform strain rates and relative displacements were calculated for the investigated regions. GPS data confirm the mostly left lateral strike slip character of the Mur-Mürz–Vienna basin fault system and suggest a contraction between the eastward moving Alpine-North Pannonian unit and the Carpathians. The computation of the seismic strain rate was based on the Kostrov summation. The averaged unit norm seismic moment tensor, which describes the characteristic style of deformation, has been obtained from the available focal mechanism solutions, whereas the annual seismic moment release showing the rate of the deformation was estimated using the catalogues of historical and recent earthquakes. Our analysis reveals that in the Central Pannonian zone the geodetic strain rate is significantly larger than the seismic strain rate. Based on the weakness of the lithosphere, the stress magnitudes and the regional features of seismicity, we suggest that the low value of the seismic/geodetic strain rate ratio can be attributed to the aseismic release of the prevailing compressive stress and not to an overdue major earthquake. In the Mur-Mürz zone, although the uncertainty of the seismic/geodetic strain rate ratio is high, the seismic part of the deformation seems to be notably larger than in the case of the Central Pannonian zone. These results reflect the different deformation mechanism, rheology and tectonic style of the investigated zones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call