Abstract

In many fluid flows of practical importance transition is caused by the linear growth of wave instabilities, such as Tollmien–Schlichting waves, which eventually grow to a finite size at which stage secondary instabilities come into play. If transition is to be delayed or even avoided in such flows, then the linear growth of the disturbances must be prevented since control in the nonlinear regime would be a considerably more difficult task. Here a strategy for active control of two-dimensional incompressible and compressible Tollmien–Schlichting waves and its use in controlling the more practically relevant problem of crossflow instability which arises in swept-wing flows is discussed. The control is through an active suction/blowing distribution at the wall though the same result could be achieved by variable wall heating. In order to control the instability it is assumed that the wall shear stress and pressure are known from measurements. It is shown that, certainly at finite Reynolds numbers, it is sufficient to know the flow properties at a finite number of points along the wall. The cases of high and finite Reynolds numbers are discussed using asymptotic and numerical methods respectively. It is shown that a control strategy can be developed to stop the growth of all two-dimensional Tollmien–Schlichting waves at finite and large Reynolds numbers. Some discussion of nonlinear effects in the presence of active control is given and the possible control of other instability mechanisms investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call