Abstract

The growing focus on reducing energy consumption, particularly in electric vehicles with limited autonomy, has prompted innovative solutions. In this context, we propose a real-time flap-based control system aimed at improving aerodynamic drag in real driving conditions. Employing a Recursive Subspace based Predictive Control approach, we conducted wind tunnel tests on a representative model vehicle at reduced scale equipped with flaps. Comprehensive assessments using pressure measurements and Particle Image Velocimetry were undertaken to evaluate the control efficiency. Static and dynamic perturbation tests were conducted, revealing the system’s effectiveness in both scenarios. The closed-loop controlled system demonstrated a substantial gain, achieving a 5% base pressure recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.