Abstract

Data augmentation is an important strategy for enlarging training datasets in deep learning-based medical image analysis. This is because large, annotated medical datasets are not only difficult and costly to generate, but also quickly become obsolete due to rapid advances in imaging technology. Image-to-image conditional generative adversarial networks (C-GAN) provide a potential solution for data augmentation. However, annotations used as inputs to C-GAN are typically based only on shape information, which can result in undesirable intensity distributions in the resulting artificially-created images. In this paper, we introduce an active cell appearance model (ACAM) that can measure statistical distributions of shape and intensity and use this ACAM model to guide C-GAN to generate more realistic images, which we call A-GAN. A-GAN provides an effective means for conveying anisotropic intensity information to C-GAN. A-GAN incorporates a statistical model (ACAM) to determine how transformations are applied for data augmentation. Traditional approaches for data augmentation that are based on arbitrary transformations might lead to unrealistic shape variations in an augmented dataset that are not representative of real data. A-GAN is designed to ameliorate this. To validate the effectiveness of using A-GAN for data augmentation, we assessed its performance on cell analysis in adaptive optics retinal imaging, which is a rapidly-changing medical imaging modality. Compared to C-GAN, A-GAN achieved stability in fewer iterations. The cell detection and segmentation accuracy when assisted by A-GAN augmentation was higher than that achieved with C-GAN. These findings demonstrate the potential for A-GAN to substantially improve existing data augmentation methods in medical image analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.