Abstract
Interferon-gamma (IFN-gamma) induces the transcription of the gene encoding a guanylate binding protein by activating a latent cytoplasmic factor, GAF (gamma-activated factor). GAF is translocated to the nucleus and binds a DNA element, the gamma-activated site. Through cross-linking and the use of specific antibodies GAF was found to be a 91-kilodalton DNA binding protein that was previously identified as one of four proteins in interferon-stimulated gene factor-3 (ISGF-3), a transcription complex activated by IFN-alpha. The IFN-gamma-dependent activation of the 91-kilodalton DNA binding protein required cytoplasmic phosphorylation of the protein on tyrosine. The 113-kilodalton ISGF-3 protein that is phosphorylated in response to IFN-alpha was not phosphorylated nor translocated to the nucleus in response to IFN-gamma. Thus the two different ligands result in tyrosine phosphorylation of different combinations of latent cytoplasmic transcription factors that then act at different DNA binding sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.