Abstract

A reconstitution system for activation of the O2(.-)-generating oxidase from bovine polymorphonuclear neutrophils (PMN) is described. This system consisted of three components, namely, a particulate fraction enriched in plasma membrane, a supernatant fluid (cytosolic fraction) recovered by high-speed centrifugation from sonicated resting bovine PMN, and arachidonic acid. The pH optimum (7.8) and the Km value for NADPH (45 microM) of the activated oxidase were virtually the same as those found in the purified enzyme. All three components had to be present during the preincubation for elicitation of oxidase activity. A further enhancement of oxidase activity was observed with the addition of nonhydrolyzable GTP analogues, such as guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) and guanosine 5'-(beta, gamma-imidotriphosphate) (GMP-PNP), to the preincubation medium. In contrast, GDP-beta-S drastically decreased oxidase activation. In a two-stage experiment, a 9-min preincubation of PMN membranes with arachidonic acid and GTP-gamma-S followed by a 1-min contact with the cytosolic fraction led to a more marked activation than did preincubation of the cytosol with arachidonic acid and GTP-gamma-S for 9 min followed by a 1-min contact with membranes, suggesting the presence of a G-protein in the membrane fraction. In the absence of added cations, the reconstitution system exhibited a substantial oxidase activity which was totally prevented by ethylenediaminetetraacetic acid (EDTA). Mg2+ added at a concentration of 0.5-1 mM enhanced oxidase activation by about 30%, indicating that endogenous Mg2+ or other activating cations were sufficient to ensure 70% of maximal activation.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call