Abstract

Leptin, a pleiotropic hormone regulating food intake and energy expenditure, has been shown to directly modulate human polymorphonuclear neutrophil (PMN) functions or indirectly through the action of tumor necrosis factor-alpha (TNF-alpha). Bovine PMN have considerable different characteristics from human PMN. For example, it does not respond to N-formyl-Methionyl-Leucyl-phenylalanine, a well known human PMN activator. In the present study, we tested the effects of leptin and TNF-alpha on superoxide production and degranulation of bovine peripheral PMN, in which both long isoform of leptin receptor (Ob-Rb) and TNF receptor 1 were expressed. Human leptin, human TNF-alpha, phorbol myristate acetate (PMA) and opsonized zymosan particles (OZP) did not stimulate degranulation responses, while zymosan-activated serum (ZAS) did. Neither leptin nor TNF-alpha enhanced the ZAS-induced degranulation responses. TNF-alpha, PMA, OZP and ZAS increased superoxide production in different magnitudes, whereas leptin did not. TNF-alpha, but not leptin, enhanced OZP- and ZAS-induced superoxide production, possibly, in part due to facilitating translocation of p47(phox), a component of NADPH oxidase. These results indicate that, unlike in human PMN, leptin does not have any direct effect on degranulation and superoxide production in bovine PMN, although TNF-alpha influences superoxide production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call