Abstract
The ability for a host to recognize infection is critical for virus clearance and often begins with induction of inflammation. The PB1-F2 of pathogenic influenza A viruses (IAV) contributes to the pathophysiology of infection, although the mechanism for this is unclear. The NLRP3-inflammasome has been implicated in IAV pathogenesis, but whether IAV virulence proteins can be activators of the complex is unknown. We investigated whether PB1-F2-mediated activation of the NLRP3-inflammasome is a mechanism contributing to overt inflammatory responses to IAV infection. We show PB1-F2 induces secretion of pyrogenic cytokine IL-1β by activating the NLRP3-inflammasome, contributing to inflammation triggered by pathogenic IAV. Compared to infection with wild-type virus, mice infected with reverse engineered PB1-F2-deficient IAV resulted in decreased IL-1β secretion and cellular recruitment to the airways. Moreover, mice exposed to PB1-F2 peptide derived from pathogenic IAV had enhanced IL-1β secretion compared to mice exposed to peptide derived from seasonal IAV. Implicating the NLRP3-inflammasome complex specifically, we show PB1-F2 derived from pathogenic IAV induced IL-1β secretion was Caspase-1-dependent in human PBMCs and NLRP3-dependent in mice. Importantly, we demonstrate PB1-F2 is incorporated into the phagolysosomal compartment, and upon acidification, induces ASC speck formation. We also show that high molecular weight aggregated PB1-F2, rather than soluble PB1-F2, induces IL-1β secretion. Furthermore, NLRP3-deficient mice exposed to PB1-F2 peptide or infected with PB1-F2 expressing IAV were unable to efficiently induce the robust inflammatory response as observed in wild-type mice. In addition to viral pore forming toxins, ion channel proteins and RNA, we demonstrate inducers of NLRP3-inflammasome activation may include disordered viral proteins, as exemplified by PB1-F2, acting as host pathogen ‘danger’ signals. Elucidating immunostimulatory PB1-F2 mediation of NLRP3-inflammasome activation is a major step forward in our understanding of the aetiology of disease attributable to exuberant inflammatory responses to IAV infection.
Highlights
Influenza A virus (IAV) is a major cause of respiratory tract infections and may result in severe immunopathology characterised by high oxidative stress, hypercytokinemia and acute respiratory distress syndrome [1]
Using reverseengineered IAV that express PB1-F2 derived from the A/Puerto Rico/8/34 (PR8) isolate, which is highly pathogenic for mice, and an otherwise isogenic virus genetically modified for ablated PB1F2 production, our studies show that PB1-F2-deficient IAV results in decreased IL-1b secretion and inflammatory cell recruitment in infected mice
The induction of inflammation by PB1-F2 protein expressed by reverse engineered A/Puerto Rico/8/34 (PR8) IAV of the H1N1 subtype is well characterized and contributes to the pathophysiology of disease [12,13,14]
Summary
Influenza A virus (IAV) is a major cause of respiratory tract infections and may result in severe immunopathology characterised by high oxidative stress, hypercytokinemia and acute respiratory distress syndrome [1]. Innate recognition of IAV through pattern recognition receptors (PRRs) plays a central role in generating inflammatory responses during infection and the recruitment of infiltrating leukocytes to the lung. NOD-like receptors (NLRs) are involved in activating the inflammasome and play a pivotal role during host responses to IAV infection [2]. IAV infection activates the NLRP3 inflammasome complex [4] which consists of the apoptotic speck-like protein containing a caspase activation and recruitment domain (ASC), NLRP3 and caspase-1. Formation of the oligomeric inflammasome can be triggered by a variety of stimuli that cause membrane perturbations and cellular dysfunction, such as pore forming toxins, ATP, protein amyloid aggregates and crystalline material [5,6,7]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have